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Abstract: We present a comparison between the modified Monte Carlo
algorithm (MMCA) and a recently proposed ray-tracing algorithm named
as photon-tracing algorithm. Both methods are compared exhaustively
according to error analysis and computational costs. We show that the
new photon-tracing method offers a solution with a slightly greater error
but requiring from considerable less computing time. Moreover, from
a practical point of view, the solutions obtained with both algorithms
are approximately equivalent, demonstrating the goodness of the new
photon-tracing method.
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3. F. J. López-Hernández, R. Pérez-Jiménez, and A. Santamarı́a, “Modified Monte Carlo scheme for high-efficiency

simulation of the impulse response on diffuse IR wireless indoor channels,” Electron. Lett. 34(19), 1819–1820
(1998).
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1. Introduction

In the last years, indoor wireless optical communications have drawn the interest of researchers
due to the need of high-speed and inexpensive data links, overall in environments where radio
frequency links are not always viable. However, the communication capacity depends on the
characteristics of the room where this communication is established [1]. The multipath penalty,
which limits the maximum baud rate, can be characterized by the impulse response. In order to
evaluate the impulse response on indoor wireless optical channels, several deterministic meth-
ods were firstly proposed [2]. These methods can only be implemented to determine the impulse
response until the third reflection due to their computational complexity. Later on, a modified
Monte Carlo-based ray-tracing algorithm (MMCA) was introduced, which presents a lower
computational cost and without limit in the number of reflections to consider [3, 4]. The algo-
rithm allows easily for the introduction of new models for the devices and materials, such as the
Phong’s reflection model [5,6], or the increase of the complexity of the simulation environment
(including obstacles and rooms with complex geometries), and it also allows to estimate the
error committed by the method during the computation of the impulse response [7].

Recently, a new ray-tracing method, which has been denominated photon-tracing algorithm
(PTA), has been proposed [8]. This method is based on the MMCA but now the rays are not
always propagated after reflection. Instead, they are only propagated in a certain proportion
according to the reflection coefficient, which makes the number of considered rays decrease
rapidly after each reflection. Zhang et al. proved the reduction in computational cost of the
new re-designed algorithm, but they did not comment on the accuracy of the results. In this
paper, we compare in more detail the differences between the two algorithms, MMCA and
PTA, according to error analysis and computational cost.

The paper is organized as follows: Section 2 describes the Monte Carlo ray-tracing algorithm,
highlighting the differences between MMCA and PTA. The computational cost is evaluated in
section 3. The equations that allow us to determine the error in computing the impulse response
are presented in section 4. Finally, several computer-simulated results are reported in section 5
in order to compare both methods. The conclusions are summarized in section 6.

2. Algorithms description

In the modified Monte Carlo ray-tracing algorithm, ray directions are randomly generated ac-
cording to the radiation pattern from the emitter. The contribution of each ray from the source
or after a bounce to the receiver is computed deterministically. Consequently, the discretiza-
tion error is due to the number of random rays. The line-of-sight (LOS) and multiple-bounce
impulse responses are considered when calculating the total impulse.

2.1. LOS impulse response

Given an emitter E and receiver R in an environment without reflectors, with a large distance d
between both, the received power is approximately

PR =
1
d2 RE (φ ,n)Aeff (ϕ) (1)

where the emitter is modeled using a generalized Lambertian radiation pattern RE (φ ,n).
Aeff (ϕ) represents the effective signal collection area of the receiver.
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RE (φ ,n) = n+1
2π PE cosn (φ) , 0 ≤ φ ≤ π

2
(2)

Aeff = Ar cosϕ rect
( ϕ

FOV

)
(3)

rect(x) =

{
1, |x| ≤ 1
0, |x|> 1

(4)

Here n is the mode number of the radiation lobe which specifies the directionality of the
emitter, PE the power radiated by the emitter, Ar the physical area of the receiver, and FOV the
receiver field of view (semi-angle from the surface normal).

Fig. 1. Geometry of emitter and receiver with reflectors. Reflection pattern of the surface is
described by Phong’s model.

2.2. Multiple-bounce impulse response

We consider now an emitter E and receiver R in a room with reflectors. The radiation from
the emitter can reach the receiver after any number of reflections (see Fig. 1). In the algo-
rithm, many rays are generated at the emitter position with a probability distribution equal to its
normalized radiation pattern RE (φ ,n)/PE . The power of each generated ray is initially PE/N,
where N is the number of rays used to discretize the source. In MMCA, when a ray impinges on
a surface, the reflection point is converted into a new optical source, thus, a new ray is generated
with a probability distribution provided by the reflection pattern of that surface, RS (θ ,θ ′). The
process continues during the simulation time. After each reflection, the power is reduced by the
reflection coefficient of the surface, and the reflected power reaching the receiver is computed
by

PR =
1
d2 RS

(
θ ,θ ′)Aeff (ϕ) (5)

where d is the distance between the reflection point and receiver, and Rs (θ ,θ ′) is the Phong’s
model, used to describe the reflection pattern of the surface [6]. This model is able to approxi-
mate the behavior of those surfaces that present a strong specular component. It considers the
reflection pattern as a sum of both diffuse and specular components. In this way, surface char-
acteristics are defined by two new parameters, the percentage of incident signal that is reflected
diffusely rd and the directivity of the specular component of the reflection m. This model is
described by

RS
(
θ ,θ ′)= ρPi

[
rd

cosθ
π

+(1− rd)
m+1

2π
cosm (θ −θ ′)

]
(6)
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where ρ is the surface reflection coefficient, Pi represents the optical power of the incident ray,
θ is the observation angle, and θ ′ represents the incidence angle.

In PTA, when a ray impinges on a surface, the probability that a new ray is generated is
given by the reflection coefficient ρ . Moreover, when a new ray is generated, its direction of
propagation is determined according to the probability distribution of the reflection pattern as
in MMCA, but now the power of the new ray keeps unalterable and equal to PE/N. In the
same way, after each reflection, the reflected power reaching the receiver is computed by using
Eq. (5), but with Pi = PE/N in Eq. (6). Therefore, both algorithms perform similarly because in
PTA only ρNk rays of power Pray = PE/N are reflected (being Nk the number of rays remained
after the previous kth bounce) whereas in MMCA all the rays are reflected but with output
power Pray = ρPi. As we will see, the fact that, in PTA, not all the incident rays are reflected
leads the number of computational operations to decrease rapidly with each new bounce with
respect to MMCA.

3. Computational complexity

The main advantage of Monte Carlo ray-tracing algorithms is that they allow for the evaluation
of the impulse response for rooms of complex geometries [7], in contrast to other methods [2,5],
without a meaningful increase in the computational cost. This can be explained by the number
of elementary calculations that are performed: NMMCA

op =KNNS, where N is the number of rays,
K is the number of reflections that are considered, and NS is the number of surfaces that define
the room. An elementary calculation is defined as the calculation of power contribution and
delay from a point source (emitter or reflection point of a ray) to the receiver, as in Eq. (5), or
the assessment of the propagation of the new generated ray to determine a new point source. The
previous value of NMMCA

op is an upper bound, because not always, after a reflection, the NS −1
remaining surfaces have to be considered as possible future reflecting surfaces (in rooms with
complex geometries, some surfaces can be placed on other greater surfaces, e.g. windows or
doors over walls; therefore, when a ray sets up from a surface with others superimposed to it,
all of them can be discarded during the searching of the new collision point). Moreover, not
always the ray contributes in the received power, because sometimes the emitting point is out
of the FOV of the receiver and its contribution does not have to be computed. Similarly, not
all the rays reach the maximum number of reflections K during the simulation time tmax either.
However, this value represents a good approximation to the required number of elementary
calculations of MMCA.

In PTA, if we consider that N rays (photons) are initially launched, after the kth bounce, only
ρ̃kNk−1 rays (photons) continue their path, where Nk−1 is the number of photons remained after
the (k−1)-th bounce (with N0 = N), and ρ̃k is an average parameter of the reflection coefficient
at the kth bounce which depends on the reflection coefficients of the surfaces, but also on the
radiation and reflection patterns, and the position and other characteristics of the emitter. The
number of elementary calculations can be computed as:

NPTA
op = NS ×

⎛

⎜
⎝N + ρ̃1N

︸︷︷︸
N1

+ ρ̃2N1︸︷︷︸
N2

+ . . .+ ρ̃K−1NK−2︸ ︷︷ ︸
NK−1

⎞

⎟
⎠ (7)

It must be noticed that the last rays considered to compute their power contributions are
those after the (K −1)-th reflection. These last rays are propagated to determine the reflecting
surfaces (and the reflecting points) and then their power contributions are computed. This is the
reason why the previous equation has been truncated in the NK−1 term.

Evidently, ρ̃k depends on which bounce is being considered. However, we can assume an
average reflection coefficient ρ̃ which allows us to represent any bounce obtained as an average
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over all the ρ̃k. Then, the previous series is reduced to NS ×
(
N + ρ̃N + ρ̃2N + . . .+ ρ̃K−1N

)
.

This numeric series converges to:

NPTA
op =

NNS
(
1− ρ̃K

)

1− ρ̃
(8)

As an example, we are going to consider the room studied in Section 5. The average reflection
coefficient is ρ̃ = 0.69 (only taking into account the areas of the surfaces), the number of rays
is N = 500000, the number of surfaces is NS = 6 and the number of considered reflections
K = 10. With MMCA, the number of elementary calculations is upper bounded by NMMCA

op =

30×106, whereas in PTA, according to Eq. (8), we will only need NPTA
op = 9.3×106 elementary

calculations, that is, the 31.1% of those required by MMCA. It must be noticed that the previous
results are only crude approximations, but they allow us to state that, from a computational point
of view, PTA is much more efficient than MMCA.

4. Error estimation

Both PTA and MMCA are Monte Carlo based ray-tracing algorithms. Therefore the error anal-
ysis for MMCA given in [7] is directly applicable to PTA. There, it was demonstrated that the
error in computing the power P′

j reaching the receiver during a small time interval Δt can be

estimated from the variance of P′
j, var

(
P′

j

)
. The biggest admissible Δt is defined as the largest

interval which ensures that the same ray does not contribute twice to a receiver near the walls,

being var
(

P′
j

)
given by [7]:

var
(
P′

j

)
=

Nj

∑
i=1

p2
i, j −

1
Nf , j

(
Nj

∑
i=1

pi, j

)2

(9)

In the previous equation, Nf , j is the total number of flights during the jth time interval (rays
flying during that interval), Nj the number of rays that contribute in the power reaching the re-
ceiver during Δt, and pi, j is the power contribution of the ith ray (i= 1,2, . . . ,Nj) arriving during
that interval obtained by using Eq. (5). Therefore, P′

j is the power value in the jth histogram
interval computed with the Monte Carlo ray-tracing algorithm. In MMCA, Nf , j coincides with
N, because during a certain interval j there are exactly N rays flying, those generated by the
emitter, which are never discarded. However, in PTA, after each reflection a certain number of
rays are removed according to the reflection coefficient of surfaces, then Nf , j decreases expo-
nentially along the time, being different for each time interval (which has been indicated by the
sub-index j in Nf , j : Nf , j1 ≥ Nf , j2 , j1 < j2).

The relative error can be computed as the square root of the variance (one standard deviation)
of P′

j given by Eq. (9) divided by the computed contribution power defined as

P′
j =

Nj

∑
i=1

pi, j (10)

Then

rel err
(
P′

j

)
=

⎡

⎢
⎣

∑
Nj
i=1 p2

i, j
(

∑
Nj
i=1 pi, j

)2 − 1
Nf , j

⎤

⎥
⎦

1/2

(11)

The above equation allows us to estimate the relative error in computing the received power
in the jth time interval.
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5. Simulation results

In order to compare PTA and MMCA methods, the simulation room described in [4,8] has been
evaluated. The main characteristics of this room are indicated in Table 1. In this example, the
reflecting surfaces are purely diffuse Lambertian (rd = 1), but rooms with materials character-
ized by the Phong’s model (such as the examples described in [7]) have also been evaluated,
obtaining similar results to those presented below. The emitter is placed at the center of the
room rested on the ceiling and pointing straight down. The receiver is located on the floor near
a corner pointing straight up. The maximum number of considered reflections is K = 10 and
the simulation time tmax = 120 ns.

Table 1. Parameters for simulation
Room Emitter Receiver

length (x): 5 m Mode number: 1 Area: 1 cm2

width (y): 5 m Position (x,y,z): 2.5, 2.5, 3 FOV: 85◦
height (z): 3 m elevation: 180◦ Position (x,y,z): 0.5, 1, 0

azimuth: 0◦ elevation: 0◦
Power: 1 W azimuth: 0◦

Materials ρ rd m
Ceiling 0.8 1 -
Walls 0.8 1 -
Floor 0.3 1 -
Number of rays (N): 500000
Number of maximum reflections (K): 10
resolution (Δt): 0.2 ns
simulation time (tmax): 120 ns

(a) PTA (b) MMCA

Fig. 2. Impulse responses obtained with (a) photon-tracing (PTA) and (b) ray-tracing
(MMCA) algorithms.

In Fig. 2 we show the impulses responses (received power) obtained by using both meth-
ods when N = 500000 rays (photons) are generated from the emitter: in Fig. 2(a) we have
the response computed by the PTA method, whereas that obtained by MMCA is depicted in
Fig. 2(b). We can observe how very similar impulse responses are obtained with both methods,
only distinguished by a slight greater ripple in that provided by PTA.
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The accuracy of both methods can be compared quantitatively by means of the relative error
committed by both algorithms during the calculation of the impulse response. Figure 3 shows
the relative error for PTA and MMCA calculated by using Eq. (11). It can be observed how
MMCA offers a solution (impulse response) with a relative error roughly constant along the
time. However, in PTA the relative error tends to increase with time, what is logical because the
number of rays (photons) that contribute in the calculated received power decreases along the
time, since many of them begin to be discarded when they collide against the room surfaces.
This is understood clearly if we observe the number of rays that contribute in the received
power along the time or at a certain bounce k (see Fig. 4). One can see how in MMCA the
number of contributions always presents a relative high value (> 1/2 peak value) except at
extreme time instants (t > 80% tmax) when the rays are moved apart from each other and their
contributions become more and more spread. In addition, no more rays are generated after the
kth reflection. On the contrary, in PTA the number of contributions decreases rapidly (in an
exponential way) with time or with the bounce index. Therefore, the received power (impulse
response) is computed by using a lower and lower number of information samples, leading the
algorithm to present a greater relative error at longer time instants.

Fig. 3. Relative error of both algorithms: PTA (blue) and MMCA (green).

(a) Along the time (b) At the kth reflection

Fig. 4. Number of contributions (a) along the time and (b) at the kth reflection.
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In Table 2 we compare PTA and MMCA according to mean relative error and number of
elementary calculations. The mean relative error has been weighted by the value of P′

j:

mean relative error =
∑J

j=1 P′
j × rel err

(
P′

j

)

∑J
j=1 P′

j

(12)

where j = 1,2, . . . ,J and J = tmax/Δt. We can see how PTA presents only an approximately
58% higher mean relative error than MMCA, since its greater values for the relative error are
found at time instants where the impulse response exhibits quite low values. We have checked
that by using N = 1000000 and N = 1500000 rays, PTA presents a mean relative error of
+12.5% and −8.1% with respect to MMCA with N = 500000. However, MMCA continues
displaying a lower relative error for t > 50 ns.

The number of elementary calculations required for both algorithms (see Table 2) demon-
strates that PTA is much more efficient than MMCA (∼28% out of the total of operations
required by the latter), as we had stated in section 3. We can observe how the predicted values
in that section are very close to those obtained during the simulations. Therefore these expres-
sions can be used to determine in advance the number of required calculations approximately.
In comparison with MMCA using N = 500000, the simulations performed with the PTA for
N = 1000000 and N = 1500000 needed the 56% and 84%, respectively, of elementary cal-
culations. However, for the latter we obtained a relative error inferior to that of MMCA when
t < 50 ns in spite of requiring 16% less computation time.

Finally, we show in Table 2 the power distribution according to the bounce index. We can
observe how both algorithms present very similar values, demonstrating a good behavior of the
PTA during the distribution of power in the remained rays after each reflection.

Table 2. Comparison between PTA and MMCA
Mean relative error Elementary calculations

PTA 0.047364 7999491
MMCA 0.029889 28608122
PTA vs. MMCA +58.468% 27.96%

Power distribution
kth bounce 1 2 3 4 5 6 7 8 9 10
PTA 29.66 25.62 15.25 10.51 6.97 4.67 3.09 2.11 1.32 0.81
MMCA 29.42 25.39 15.36 10.66 7.02 4.71 3.17 2.12 1.35 0.80

6. Conclusions

In this paper, we have compared the conventional modified Monte Carlo ray-tracing algorithm
with a recently proposed one, which has been called photon-tracing algorithm. We have es-
tablished quantitative parameters to carry out this comparison according to computational cost
and accuracy of the provided solution. We have stated analytically and by means of simulation
results that PTA presents a lower computational cost than conventional MMCA. However, re-
garding the error committed by both algorithms, MMCA is more reliable than PTA, although
the mean relative error of the latter can be considered acceptable taking into account the reduc-
tion in computing time. In addition, more rays can be used by the new method still requiring
lower simulation run-time in order to obtain more accurate results. Therefore, we can conclude
that PTA begins to appear as a good substitute to MMCA with superior performance.
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