ESTRATEGIAS PARA LA IDENTIFICACIÓN DE PERSONAS MEDIANTE BIOMETRÍA DE LA MANO SIN CONTACTO

2011

Aythami Morales Moreno Director: Dr. D. Miguel Ángel Ferrer Ballester Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones Programa de Doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería del Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería

- 1. INTRODUCCIÓN.
- 2. ADQUISICIÓN DE LA MANO SIN CONTACTO.
- 3. EXTRACCIÓN DE CARACTERÍSTICAS.
- 4. RESULTADOS EXPERIMENTALES.
 - 4.1. Biometría de la forma de la mano sin contacto.
 - 4.2. Biometría de la palma sin contacto.
 - 4.3. Multimodalidad.
- 5. SISTEMA DE DETECCIÓN DE VIDA.
- 6. CONCLUSIONES Y LÍNEAS FUTURAS.

1. INTRODUCCIÓN

Sistemas Biométricos

Sé quien eres por lo que sé de ti, no por lo que dices ser.

man with the way way and all when the strange way way and a strange way way and a strange way and a strange way

Biometría de la mano

Biometría de la mano

Huella dactilar

Huella palmar

A. Morales, M. A. Ferrer y A. Kumar. "Improved Palmprint Authentication Using Contactless Imaging" in Proceeding IEEE Fourth International Conference on Biometrics: Theory, Applications and Systems, Washington, Sep 2010.

Biometría de la mano

Huella dactilar

Huella palmar

Forma de la mano

M. A. Ferrer, A. Morales, C. M. Travieso, J. B. Alonso, "Low Cost Multimodal Biometric identification System Based on Hand Geometry, Palm and Finger Print Texture", on 2007 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 52 – 58. Oct 2007.

Huella palmar

Forma de la mano

Textura de los dedos

M. A. Ferrer, A. Morales, C. M. Travieso, J. B. Alonso, "Combining hand biometric traits for personal identification" on 43nd Annual IEEE International Carnahan Conference on Security Technology, pp. 155-159, 2009.

Huella palmar

Forma de la mano

Textura de los dedos

Patrón vascular

M. A. Ferrer, A. Morales, L. Ortega. "Infrared hand dorsum images for identification" Electronics Letters, Vol. 45 (6), pp. 306-308, Mar. 2009.

Huella palmar

Forma de la mano

Textura de los dedos

Patrón vascular

Región digito-palmar

Avances en la industria biométrica (manos)

Avances en la industria biométrica (manos) y científicos (manos)

Tasas de error= 1-2%

Es posible diseñar sistemas de identificación de personas mediante biometría de la mano sin contacto con métricas de calidad similares a los sistemas biométricos con contacto.

Utilizando dispositivos de bajo coste (webcams) y en esquemas de alta conveniencia de usuario que funcionen de forma autónoma y no supervisada.

•Segmentar la mano en un entorno no controlado: -Iluminación. -Fondo.

•Adquisición automática no supervisada.

2. ADQUISICIÓN DE LA MANO SIN CONTACTO

Entornos ideales vs entornos realistas

- La medida de la robustez de un método de segmentación se obtiene de los resultados en las peores condiciones.
- Los resultados en un entorno no controlado son difícilmente previsibles.
- Se intenta segmentar la mano a partir de técnicas de segmentación clásicas.

Segmentación a partir del método Otsu

 Se estima un umbral que maximice el cociente entre varianza intraclase y varianza interclase.

$$k_0: P_0(t) = \sum_{g=0}^t p(g)$$

$$k_1: P_1(t) = \sum_{g=t+1}^{G} p(g) = 1 - P_0(t)$$

 Método útil cuando se disponen de dos clases bien diferenciadas.

Segmentación a partir del color de la piel

- Se utiliza la información de color de la imagen.
- A partir de umbrales y relaciones de valor se estima si un pixel pertenece a piel o no.

 $I_{RGB}(x,y,1) > 95 \ y \ I_{RGB}(x,y,2) > 40 \ y \ I_{RGB}(x,y,3) > 20 \ y$

 $\max[I_{RGB}(x, y, z)] - \min[I_{RGB}(x, y, z)] > 15 y$

 $\left|I_{RGB}\left(x,y,1\right)-I_{RGB}\left(x,y,2\right)\right|>15\;y$

 $I_{RGB}(x,y,1) > I_{RGB}(x,y,2) \; y$

$$I_{RGB}\left(x,y,1\right) > I_{RGB}\left(x,y,3\right)$$

Segmentación a partir del método K-Medias

- Agrupación de los píxeles en *k* clases.
- Las pruebas se utilizaron 2 clases: fondo y mano.
- El método funciona cuando las clases están bien diferenciadas.

Segmentación a partir del método Canny

- El método se basa en el estudio de las discontinuidades en la imagen.
- Se trabaja con el gradiente.
- Muy dependiente del fondo.

$$G = \sqrt{G_x^2 + G_y^2}$$

$$\theta = \arctan\left(\frac{G_y}{G_x}\right)$$

Segmentación a partir del método Level-set

- Método basado en los bordes presentes en la imagen.
- Se parte de una curva de inicialización.
- Se adapta la curva en base al gradiente de la imagen.

El principal problema de la segmentación es la adquisición en entornos no controlados

Solución basada en el trabajo en entorno semi-controlado

- Tiempos de exposición del sensor de la cámara bajos + iluminación propia de alta intensidad.
- El corto periodo que permanece expuesto el sensor expone los objetos con mayor intensidad.
- Solución independiente del fondo y "robusta" a cambios de iluminación.

Morales, M. A. Ferrer, F. Díaz, J. B. Alonso, C. M. Travieso, "Contact-free hand biometric system for real environments" on *Proceedings 2008 European Signal Processing Conference (EUSIPCO-2008)*. Laussane. August 2008.

PROPUESTA: El infrarrojo como solución a los problemas de segmentación

- El principal problema es la pérdida de información relativa a la textura palmar.
- La imagen es óptima para segmentación y procesado de la forma de la mano.

PROPUESTA: Esquema dual de adquisición infrarrojo-visible

- El principal problema es la pérdida de información relativa a la textura palmar.
- La imagen es óptima para segmentación y procesado de la forma de la mano.
- SOLUCIÓN: Uso de un esquema de adquisición dual.

PROPUESTA: Esquema dual de adquisición infrarrojo-visible

- El principal problema es la pérdida de información relativa a la textura palmar.
- La imagen es óptima para segmentación y procesado de la forma de la mano.
- SOLUCIÓN: Uso de un esquema de adquisición dual basado en dos cámaras.

PROPUESTA: Esquema dual de adquisición infrarrojo-visible

- El principal problema es la pérdida de información relativa a la textura palmar.
- La imagen es óptima para segmentación y procesado de la forma de la mano.
- SOLUCIÓN: Uso de un esquema de adquisición dual basado en dos cámaras.

Hardware

Ventajas

Mínimo coste computacional

Inconvenientes

Mayor complejidad del sistema Mayor distancia Mano-Cámara

Software

Ventajas

Sencillez del sistema Menor distancia Mano-Cámara

Inconvenientes

Elevado coste computacional

PROPUESTA: Solución Hardware

- La correlación se produce a partir de un filtro dicroico.
- La segmentación es directa.

PROPUESTA: Solución Hardware

- La correlación se produce a partir de un filtro dicroico.
- La segmentación es directa.

PROPUESTA: Solución Software

- Las cámaras se sitúan sobre el mismo plano.
- Placa de iluminación infrarroja y visible.
- El error de proyección impide correlar las imágenes mediante desplazamiento.
- La distancia entre mano y dispositivo se reduce.

PROPUESTA: Solución Software

- Las cámaras se sitúan sobre el mismo plano.
- Placa de iluminación infrarroja y visible.
- El error de proyección impide correlar las imágenes mediante desplazamiento.
- La distancia entre mano y dispositivo se reduce.

Segmentación en visible a partir de la imagen en infrarrojo

 Se utiliza el algoritmo Active Shape Model (ASM) para ajustar la silueta infrarroja a la mano visible.

Imagen infrarroja

Imagen visible

A. Morales, M. A. Ferrer. "**BiSpectral Contactless hand based biometric identification device**". Biometrics. Ed. Intech. Aceptado: Pendiente de publicación.

PROPUESTA: Adquisición automática

 La imagen se valida detectando si los dedos se encuentran separados.

 $\frac{\max (D(2,2), D(2,1))}{\min (D(2,2), D(2,1))} \ge 0.7$ $\frac{\max (D(3,3), D(3,2))}{\min (D(3,3), D(3,2))} \ge 0.8$

- Una máscara guía al usuario buscando reducir el error de proyección.
- La adquisición se realiza cuando la máscara de referencia y la imagen binariza se solapen en un 60%.

Aportaciones:

- Sistema de adquisición Hardware
- -Sistema de adquisición Software
- -Adquisición automática

Características	GPDS-CL1	GPDS-CL2	IITD
Número de usuarios	110	100	470
Imágenes por usuario	10-14* (2 bandas)	10 (2 bandas)	6
Número de sesiones	10*	1	1
Adquisición	Sin contacto	Sin contacto	Sin contacto
Fondo	No controlado	No controlado	Controlado
Iluminación	No controlada	No controlada	Controlada
Tipo de iluminación	NIR+Visible	NIR+Visible	Visible
Entrenamiento supervisado	Si	Si	Si
Verificación supervisada	No	Si	Si
Distancia hasta objetivo	15-25 cm	5-15 cm	15-25 cm
Espacio de color	RGB	RGB	Gris
Banda de las imágenes	NIR y Visible	NIR y Visible	Visible
Resolución	800x600	800x600	800x600

Características	GPDS-CL1	GPDS-CL2	IITD
Número de usuarios	110	100	470
Imágenes por usuario	10-14* (2 bandas)	10 (2 bandas)	6
Número de sesiones	10*	1	1
Adquisición	Sin contacto	Sin contacto	Sin contacto
Fondo	No controlado	No controlado	Controlado
Iluminación	No controlada	No controlada	Controlada
Tipo de iluminación	NIR+Visible	NIR+Visible	Visible
Entrenamiento supervisado	Si	Si	Si
Verificación supervisada	No	Si	Si
Distancia hasta objetivo	15-25 cm	5-15 cm	15-25 cm
Espacio de color	RGB	RGB	Gris
Banda de las imágenes	NIR y Visible	NIR y Visible	Visible
Resolución	800x600	800×600	800x600

Características	GPDS-CL1	GPDS-CL2	IITD
Número de usuarios	110	100	470
Imágenes por usuario	10-14* (2 bandas)	10 (2 bandas)	6
Número de sesiones	10*	1	1
Adquisición	Sin contacto	Sin contacto	Sin contacto
Fondo	No controlado	No controlado	Controlado
lluminación	No controlada	No controlada	Controlada
Tipo de iluminación	NIR+Visible	NIR+Visible	Visible
Entrenamiento supervisado	Si	Si	Si
Verificación supervisada	No	Si	Si
Distancia hasta objetivo	15-25 cm	5-15 cm	15-25 cm
Espacio de color	RGB	RGB	Gris
Banda de las imágenes	NIR y Visible	NIR y Visible	Visible
Resolución	800x600	800x600	800x600

Características	GPDS-CL1	GPDS-CL2	IITD
Número de usuarios	110	100	470
Imágenes por usuario	10-14* (2 bandas)	10 (2 bandas)	6
Número de sesiones	10*	1	1
Adquisición	Sin contacto	Sin contacto	Sin contacto
Fondo	No controlado	No controlado	Controlado
lluminación	No controlada	No controlada	Controlada
Tipo de iluminación	NIR+Visible	NIR+Visible	Visible
Entrenamiento supervisado	Si	Si	Si
Verificación supervisada	No	Si	Si
Distancia hasta objetivo	15-25 cm	5-15 cm	15-25 cm
Espacio de color	RGB	RGB	Gris
Banda de las imágenes	NIR y Visible	NIR y Visible	Visible
Resolución	800x600	800x600	800x600

3. EXTRACCIÓN DE CARACTERÍSTICAS

Aportaciones:

- Sistema de adquisición Hardware
- -Sistema de adquisición Software
- -Adquisición automática

Métodos de extracción de características

- Forma de la mano:
 - Medidas invariantes a la proyección.
 - Modelos de apariencia (ICA, PCA).
 - Distancia entre siluetas.
 - Geometría de los dedos.
- Palma:
 - Medidas globales:
 - Gabor.
 - Wavelet.
 - OLOF.
 - Medidas locales:
 - Minucias
 - SURF.
 - SIFT.

Métodos de extracción de características

- Forma de la mano:
 - Medidas invariantes a la proyección.
 - Modelos de apariencia (ICA, PCA).
 - Distancia entre siluetas.
 - Geometría de los dedos.

- Palma:
 - Medidas globales:
 - Gabor.
 - Wavelet.
 - OLOF.
 - Medidas locales:
 - Minucias
 - SURF.
 - SIFT.

 Se obtiene el contorno de la imagen binaria.

- Se obtiene el contorno de la imagen binaria.
- Se aproximan las puntas y valles a partir de las coordenadas polares.

- Se obtiene el contorno de la imagen binaria.
- Se aproximan las puntas y valles a partir de las coordenadas polares.
- Se estiman los laterales de cada dedo para obtener el eje del dedo.
- Se obtiene la nueva punta del dedo como la intersección entre el eje y el contorno.

- Se obtiene el contorno de la imagen binaria.
- Se aproximan las puntas y valles a partir de las coordenadas polares.
- Se estiman los laterales de cada dedo para obtener el eje del dedo.
- Se obtiene la nueva punta del dedo como la intersección entre el eje y el contorno.
- Se extraen las medidas a partir de los puntos de las líneas ortogonales al eje y la intersección con el contorno.
- Se extraen 450 medidas cuando en esquemas sin contactos se adquieren en torno a 30.

A. Morales, M. A. Ferrer, C. M. Travieso, J. B. Alonso, "Comparing infrared and visible illumination for contact-less hand based biometric scheme", on 42nd IEEE International Carnahan Conference on Security Technology. Prage. Oct. 2008.

PROPUESTA: Caracterización geométrica para esquemas sin contacto

- Se adquieren 12 veces más medidas que en esquemas clásicos con contacto.
- Se normalizan los anchos respecto al valor máximo.
- Se reduce la dimensionalidad del vector de muestras a partir de la transformada DCT.

$$DCT(k) = C(k) \sum_{n=1}^{N} x(n) \cos\left[\frac{\pi(2n-1)(k-1)}{2N}\right] \quad k = 1, \dots, N$$
$$C(u) = \begin{cases} \frac{1}{\sqrt{N}} & k = 1\\ \sqrt{\frac{2}{N}} & 2 \le k \le N \end{cases}$$

- Se utilizan los primeros 50 coeficientes.
- Se elimina información de alta frecuencia.

A. Morales, M. A. Ferrer. "Contact-free hand biometrics system for real environments based on geometric features". Resent Advanced in Signal Processing. Ed. Intech. ISBN: 978-953-7619-41-1. pp. 185-194. Feb. 2010.

La Palma - Extracción de la región de interés

- Los modelo de extracción de la región palmar clásicos [D. Zhang et al, 2003] son sensibles a errores en la localización de los valles.
- Se propone un modelo basado en 5 puntos (en lugar de 2) buscando mayor robustez ante errores en la localización de los valles.

[D. Zhang et al, 2003]

Propuesta

Usuario X – Imagen X

3 keypoints

Usuario X – Imagen Y

3 keypoints

2 keypoints

2 Coincidencias

PROPUESTA: Modified Scale Invariant Feature Transform (SIFT)

A. Morales, M. A. Ferrer y A. Kumar. *"Toward Contactless Palmprint Authentication"* Special Issue on Future in Biometric Processing, IET Computer Vision. Aceptado con cambios.

• Los puntos de interés se concentran en las líneas principales.

PROPUESTA: SIFT - Preprocesado

Los puntos de interés se concentran en las líneas principales.

Imagen preprocesada

Localización de puntos de interés

PROPUESTA: SIFT - Preprocesado

Los puntos de interés se concentran en las líneas principales.

Imagen preprocesada

Localización de puntos de interés

PROPUESTA: SIFT - Validación

- Primera imposición: cada descriptor presenta como máximo una coincidencia.
- Segunda imposición: los puntos de interés deben localizarse en regiones similares de la palma.

$$D_{c}(i,j) = \left\| c_{i}^{g} - c_{j}^{q} \right\|^{2} \le 1.1 \sum_{i=1}^{M} \left\| c_{i}^{g} - c_{j}^{q} \right\|^{2} / M$$

Genuinas

Impostoras

Orthogonal Line Ordinal Features (OLOF)

Filtrado direccional Gaussiano.

 $OF(\theta) = f(x, y, \theta) - f\left(x, y, \theta + \frac{\pi}{2}\right)$

 Se filtra con tres direcciones diferentes buscando maximizar el contraste entre líneas palmares y se binariza.

 El resultado es la distancia media entre las 3 máscaras de entrenamiento y verificación.

 $D = (D^{\theta=0} + D^{\theta=\pi/6} + D^{\theta=\pi/3})/3$

PROPUESTA: Incluir traslación y rotación en la clasificación

- Pequeños errores de segmentación provoca una reducción de las prestaciones.
- La introducción de rotación y traslación en el momento de comparar las máscaras puede corregir estos pequeños errores.

Imagen entrenamiento

Imagen verificación

PROPUESTA: Incluir traslación y rotación en la clasificación

- Pequeños errores de segmentación provoca una reducción de las prestaciones.
- La introducción de rotación y traslación en el momento de comparar las máscaras puede corregir estos pequeños errores.

Traslación de 4 píxeles

Imagen entrenamiento

Imagen verificación
PROPUESTA: Incluir traslación y rotación en la clasificación

- Pequeños errores de segmentación provoca una reducción de las prestaciones.
- La introducción de rotación y traslación en el momento de comparar las máscaras puede corregir estos pequeños errores.

Rotación de 4 grados

Imagen entrenamiento

Imagen verificación

- Dependen de la naturaleza de las medidas utilizadas en la extracción de características.
- Se utilizarán tres clasificadores:
 - LS-SVM -> Medidas geométricas.
 - Distancia normalizada de Hamming -> OLOF.
 - Número de coincidencias -> MSIFT
- Entrenamiento a partir de 4 muestras genuinas.
- LS-SVM necesitan de un conjunto de muestras negativas.

4. RESULTADOS EXPERIMENTALES

Metodología de experimentación

- Experimentación con grupo cerrado:
 - La base de datos se divide por muestras.
 - Los usuarios de entrenamiento y verificación son los mismos.
 - Experimentación no realística.
- Experimentación con grupo abierto:
 - La base de datos se divide por usuarios.
 - Los usuarios de entrenamiento y verificación son diferentes.
 - Experimentación realística.

Métricas de calidad: FAR, FRR, EER, curvas DET.

Aythami Morales, Miguel Ángel Ferrer, Marcos Faundez, Joan Fàbregas, Guillermo Gonzalez, Javier Garrido, Ricardo Ribalda, Javier Ortega, Manuel Freire. "Biometric System Verification Close to "Real World" Conditions" on Biometric ID Management and Multimodal Communication, Joint COST 2101 and 2102 International Conference, BioID MultiComm 2009, Madrid, Spain, September 16-18, 2009. 78

4.1. BIOMETRÍA DE LA FORMA DE LA MANO SIN CONTACTO

El RBF muestras los mejores resultados.

Tipo de Kernel	Base de	EER
	datos	
Lineal	GPDS-CL2	3.33%
Polinómico (orden 2)	GPDS-CL2	0.85%
Polinómico (orden 3)	GPDS-CL2	1.67%
Polinómico (orden 4)	GPDS-CL2	2.61%
RBF	GPDS-CL2	0.65%

Ajuste del número de dedos

Resultados similares al estado del arte en sistemas con contacto.

Número de dedos	Base de	EER
	datos	
1 dedo	GPDS-CL2	9.56%
2 dedos	GPDS-CL2	3.52%
3 dedos	GPDS-CL2	1.38%
4 dedos	GPDS-CL2	0.63%
4 dedos + longitud	GPDS-CL2	2.39%

El RBF muestras los mejores resultados.

Tipo de Kernel	Base de	EER
	datos	
Lineal	GPDS-CL2	3.33%
Polinómico (orden 2)	GPDS-CL2	0.85%
Polinómico (orden 3)	GPDS-CL2	1.67%
Polinómico (orden 4)	GPDS-CL2	2 61%
RBF	GPDS-CL2	0.65%

Ajuste del número de dedos

Resultados similares al estado del arte en sistemas con contacto.

Número de dedos	Base de	EER
	datos	
1 dedo	GPDS-CL2	9.56%
2 dedos	GPDS-CL2	3.52%
3 dedos	GPDS-CL2	1.38%
4 dedos	GPDS-CL2	0.63%
4 dedos + longitud	GPDS-CL2	2.39%

El RBF muestras los mejores resultados.

Tipo de Kernel	Base de	EER
	datos	
Lineal	GPDS-CL2	3.33%
Polinómico (orden 2)	GPDS-CL2	0.85%
Polinómico (orden 3)	GPDS-CL2	1.67%
Polinómico (orden 4)	GPDS-CL2	2 61%
RBF	GPDS-CL2	0.65%

Ajuste del número de dedos

Resultados similares al estado del arte en sistemas con contacto.

Número de dedos	Base de	EER
	datos	
1 dedo	GPDS-CL2	9.56%
2 dedos	GPDS-CL2	3.52%
3 dedos	GPDS-CL2	1.38%
4 dedos	GPDS-CL2	0.63%
4 dedos + longitud	GPDS-CL2	2.39%

Número de coeficientes	Base de datos	EER	Umbral escogido a prior	
			FAR(%)	FRR(%)
10 coeficientes	GPDS-CL2	7.38%	6.52%	8.93%
20 coeficientes	GPDS-CL2	2.34%	1.41%	5.33%
30 coeficientes	GPDS-CL2	1.14%	0.74%	2.5%
40 coeficientes	GPDS-CL2	0.84%	0.36%	1.8%
50 coeficientes	GPDS-CL2	0.65%	0.39%	1.5%
60 coeficientes	GPDS-CL2	0.66%	0.32%	1.61%
70 coeficientes	GPDS-CL2	0.63%	0.25%	1.61%
80 coeficientes	GPDS-CL2	0.63%	0.27 %	1.64%
90 coeficientes	GPDS-CL2	0.64%	0.45 %	1.33%

- Resultados estables con la DCT.
- Mejoras entorno al 40% respecto a métodos clásicos.

Medidas por dedo	Base de datos	EER (sin DCT)	EER (con DCT)
5 medidas	GPDS-CL2	5.04% 个238%	3.2 % 个114%
10 medidas	GPDS-CL2	1.49 % Referencia	1.16 % ↓22%
20 medidas	GPDS-CL2	1.13% ↓24%	0.65 % ↓56%
50 medidas	GPDS-CL2	0.74% ↓50%	0.83 % ↓44%
100 medidas	GPDS-CL2	0.86% ↓42%	0.84 % ↓44%
150 medidas	GPDS-CL2	0.97% ↓35%	0.83% ↓44%
200 medidas	GPDS-CL2	1.32% ↓11%	0.92 % ↓38%

Número de coeficientes	Base de datos	EER	Umbral escogido a priori	
			FAR(%)	FRR(%)
10 coeficientes	GPDS-CL2	7.38%	6.52%	8.93%
20 coeficientes	GPDS-CL2	2.34%	1.41%	5.33%
30 coeficientes	GPDS-CL2	1.14%	0.74%	2.5%
40 coeficientes	GPDS-CL2	0.84%	0.36%	1.8%
50 coeficientes	GPDS-CL2	0.65%	0.39%	1.5%
60 coeficientes	GPDS-CL2	0.66%	0.32%	1.61%
70 coeficientes	GPDS-CL2	0.63%	0.25%	1.61%
80 coeficientes	GPDS-CL2	0.63%	0.27 %	1.64%
90 coeficientes	GPDS-CL2	0.64%	0.45 %	1.33%

- Resultados estables con la DCT.
- Mejoras entorno al 40% respecto a métodos clásicos.

Medidas por dedo	Base de datos	EER (sin DCT)	EER (con DCT)
5 medidas	GPDS-CL2	5.04% 个238%	3.2 % 个114%
10 medidas	GPDS-CL2	1.49 % Referencia	1.16 % ↓22%
20 medidas	GPDS-CL2	1.13% ↓24%	0.65 % ↓56%
50 medidas	GPDS-CL2	0.74% ↓50%	0.83 % ↓44%
100 medidas	GPDS-CL2	0.86% ↓42%	0.84 % ↓44%
150 medidas	GPDS-CL2	0.97% ↓35%	0.83% ↓44%
200 medidas	GPDS-CL2	1.32% ↓11%	0.92 % ↓38%

Número de coeficientes	Base de datos	EER	Umbral escogido a prior	
			FAR(%)	FRR(%)
10 coeficientes	GPDS-CL2	7.38%	6.52%	8.93%
20 coeficientes	GPDS-CL2	2.34%	1.41%	5.33%
30 coeficientes	GPDS-CL2	1.14%	0.74%	2.5%
40 coeficientes	GPDS-CL2	0.84%	0.36%	1.8%
50 coeficientes	GPDS-CL2	0.65%	0.39%	1.5%
60 coeficientes	GPDS-CL2	0.66%	0.32%	1.61%
70 coeficientes	GPDS-CL2	0.63%	0.25%	1.61%
80 coeficientes	GPDS-CL2	0.63%	0.27 %	1.64%
90 coeficientes	GPDS-CL2	0.64%	0.45 %	1.33%

- Resultados estables con la DCT.
- Mejoras entorno al 40% respecto a métodos clásicos.

Medidas por dedo	Base de datos	EER (sin DCT)	EER (con DCT)
5 medidas	GPDS-CL2	5.04% 个238%	3.2 % 个114%
10 medidas	GPDS-CL2	1.49 % Referencia	1.16 % ↓22%
20 medidas	GPDS-CL2	1.13% ↓24%	0.65 % ↓56%
50 medidas	GPDS-CL2	0.74% ↓50%	0.83 % ↓44%
100 medidas	GPDS-CL2	0.86% ↓42%	0.84 % ↓44%
150 medidas	GPDS-CL2	0.97% ↓35%	0.83% ↓44%
200 medidas	GPDS-CL2	1.32% ↓11%	0.92 % ↓38%

Número de coeficientes	Base de datos	EER	Umbral escogido a prior	
			FAR(%)	FRR(%)
10 coeficientes	GPDS-CL2	7.38%	6.52%	8.93%
20 coeficientes	GPDS-CL2	2.34%	1.41%	5.33%
30 coeficientes	GPDS-CL2	1.14%	0.74%	2.5%
40 coeficientes	GPDS-CL2	0.84%	0.36%	1.8%
50 coeficientes	GPDS-CL2	0.65%	0.39%	1.5%
60 coeficientes	GPDS-CL2	0.66%	0.32%	1.61%
70 coeficientes	GPDS-CL2	0.63%	0.25%	1.61%
80 coeficientes	GPDS-CL2	0.63%	0.27 %	1.64%
90 coeficientes	GPDS-CL2	0.64%	0.45 %	1.33%

- Resultados estables con la DCT.
- Mejoras entorno al 40% respecto a métodos clásicos.

Medidas por dedo	Base de datos	EER (sin DCT)	EER (con DCT)
5 medidas	GPDS-CL2	5.04% 个238%	3.2 % 个114%
10 medidas	GPDS-CL2	1.49 % Referencia	1 16 % J.22%
20 medidas	GPDS-CL2	1.13% ↓24%	0.65 % ↓56%
50 medidas	GPDS-CL2	0.74% ↓50%	0.83 % ↓44%
100 medidas	GPDS-CL2	0.86% ↓42%	0.84 % ↓44%
150 medidas	GPDS-CL2	0.97% ↓35%	0.83% ↓44%
200 medidas	GPDS-CL2	1.32% ↓11%	0.92 % ↓38%

- Resultados estables a partir de 40 usuarios.
- Grandes diferencias entre experimento en condiciones ideales y condiciones reales.

Experimento con grupo cerrado -> EER= 0.0024%

Número de usuarios negativos	EER
	Grupo abierto
10 usuarios	1.51%
20 usuarios	0.94%
30 usuarios	0.95%
40 usuarios	0.63%
50 usuarios	0.67%
60 usuarios	0.65%
70 usuarios	0.65 %
80 usuarios	0.67%
90 usuarios	0.56%
99 usuarios	-*

- Resultados estables a partir de 40 usuarios.
- Grandes diferencias entre experimento en condiciones ideales y condiciones reales.

Experimento con grupo cerrado -> EER= 0.0024%

Número de usuarios negativos	EER
	Grupo abierto
10 usuarios	1.51%
20 usuarios	0.94%
30 usuarios	0.95%
40 usuarios	0.63%
50 usuarios	0.67%
60 usuarios	0.65%
70 usuarios	0.65 %
80 usuarios	0.67%
90 usuarios	0.56%
99 usuarios	-*

• El número de sesiones influye considerablemente en los resultados.

Base de datos	Número de sesiones	EER	Umbral escogido a priori	
			FAR(%)	FRR(%)
GPDS-CL1	10	2.64 %	2.21%	3.43%
GPDS-CL1	1	1.47 %	0.92%	1.87%
GPDS-CL2	1	0.65 %	0.23%	1.07%

• No se alcanza el estado del arte en condiciones realísticas.

• El número de sesiones influye considerablemente en los resultados.

Base de datos	Número de sesiones	EER	Umbral escogido a priori	
			FAR(%)	FRR(%)
GPDS-CL1	10	2.64 %	2.21%	3.43%
GPDS-CL1	1	1.47 %	0.92%	1.87%
GPDS-CL2	1	0.65 %	0.23%	1.07%

• No se alcanza el estado del arte en condiciones realísticas.

4.2. BIOMETRÍA DE LA PALMA SIN CONTACTO

APORTACIÓN: Efectos del preprocesado en MSIFT

- Los puntos de interés se concentran en las líneas principales.
- Un filtrado direccional permite una distribución más uniforme.

APORTACIÓN: Efectos de la validación en MSIFT

- Primera imposición: cada descriptor presenta como máximo una coincidencia.
- Segunda imposición: los puntos de interés deben localizarse en regiones similares de la palma.

APORTACIÓN: Efectos de la traslación y rotación en OLOF

 Incluir traslación a la hora de comparar máscaras tiene gran incidencia en los resultados.

IITD

Característica	EER(%)	Umbral escogido a priori	
		FAR(%)	FRR(%)
MSIFT	0.34	0.53	0.26
Textura OLOF	0.96	1.03	0.85

GPDS-Cl2

Característica	EER(%)	Umbral escogido a priori	
		FAR(%)	FRR(%)
MSIFT	0.31	0.03	0.77
Textura OLOF	0.98	1.04	0.93

Característica	EER(%)		Umbral escogido a priori	
	1 sesión	10 sesiones	FAR(%)	FRR(%)
MSIFT	0.47	1.59	0.63(0.21)	2.55(0.72)
Textura OLOF	1.83	1.89	2.31(2.24)	1.53(1.45)

IITD

Característica	EER(%)	Umbral escogido a priori	
	_	FAR(%)	FRR(%)
MSIFT	0.34	0.53	0.26
Textura OLOF	0.96	1.03	0.85

GPDS-Cl2

Característica	EER(%)	Umbral esco	gido a priori
		FAR(%)	FRR(%)
MSIFT	0.31	0.03	0.77
Textura OLOF	0.98	1.04	0.93

Característica	EER(%)		Umbral escogido a priori	
	1 sesión 10 sesiones		FAR(%)	FRR(%)
MSIFT	0.47	1.59	0.63(0.21)	2.55(0.72)
Textura OLOF	1.83	1.89	2.31(2.24)	1.53(1.45)

IITD

Característica	EER(%)	Umbral escogido a priori	
		FAR(%)	FRR(%)
MSIFT	0.34	0.53	0.26
Textura OLOF	0.96	1.03	0.85

GPDS-Cl2

Característica	EER(%)	Umbral escogido a priori	
		FAR(%)	FRR(%)
MSIFT	0.31	0.03	0.77
Textura OLOF	0.98	1.04	0.93

Característica	EER(%)		Umbral escogido a priori	
	1 sesión 10 sesiones		FAR(%)	FRR(%)
MSIFT	0.47	1.59	0.63(0.21)	2.55(0.72)
Textura OLOF	1.83	1.89	2.31(2.24)	1.53(1.45)

ROBUSTEZ DE LOS RASGOS

Robustez de los rasgos biométricos

Robustez

Medidas	Escala	Borrosa	Proyección
Geometría	Alta	Alta	Ваја
OLOF	Media	Media	Baja
MSIFT	Media	Media-Baja	Media

4.3. MULTIMODALIDAD

- La diferente naturaleza de las medidas ofrece grandes posibilidades a la hora de combinarlas.
- Se propone una fusión a nivel de "scores".

Fusión a nivel de resultados del clasificador

Fusión a nivel de "scores".

GPDS-CL1

Fusión a nivel de resultados del clasificador

• Las distribuciones de resultados de geometría y OLOF muestran similitudes.

Fusión a nivel de resultados del clasificador

- Se utilizan tres clasificadores diferentes con tres rangos diferentes.
- Se normalizan los resultados de geometría y OLOF a partir de la técnica min/max.
- La fusión se realiza a partir de una suma ponderada:

resultado fusión = $w_1 * (g' + t') + s$

El factor de ponderación *w*¹ se estima a partir de la distancia de Mahalanobis.

GPDS-Cl2

Característica	EER(%)	Umbral escogido a priori	
		FAR(%)	FRR(%)
MSIFT	0.31	0.03	0.77
Textura OLOF	0.98	1.04	0.93
Geometría	0.56	0.34	0.71
Fusión	0.007	0.0	0.01

Característica	EER(%)		Umbral escogido a priori	
	1 sesión	10 sesiones	FAR(%)	FRR(%)
MSIFT	0.47	1.59	0.63(0.21)	2.55(0.72)
Textura OLOF	1.83	1.89	2.31(2.24)	1.53(1.45)
Geometría	1.47	2.64	2.21(0.92)	3.43(1.87)
Fusión	0.0	0.11	0.21(0.0)	0.06(0.0)

GPDS-Cl2

Característica		EER(%)		Umbral escogido a priori		
			FAR(%)	FRR(%)		
MSIFT	0.31		0.03	0.77		
Textura OLOF		0.98		1.04	0.93	
Geometría		0.56		0.34	0.71	
Fusión		0.007		0.0	0.01	

Característica	EER(%)		Umbral escogido a priori	
	1 sesión	10 sesiones	FAR(%)	FRR(%)
MSIFT	0.47	1.59	0.63(0.21)	2.55(0.72)
Textura OLOF	1.83	1.89	2.31(2.24)	1.53(1.45)
Geometría	1.47	2.64	2.21(0.92)	3.43(1.87)
Fusión	0.0	0.11	0.21(0.0)	0.06(0.0)

Es posible diseñar sistemas de identificación de personas mediante biometría de la mano sin contacto con métricas de calidad similares a los sistemas biométricos con contacto.

5. SISTEMA DE DETECCIÓN DE VIDA
Sistemas de detección de vida

 La seguridad de los sistemas biométricos frente a ataques de tipo "spoofing" es reducida.

 La imposición de trabajar en esquemas sin contacto obliga a desechar soluciones basadas en técnicas como: pulsometría, presión, propiedades físicas,...

 Se propone el uso de imágenes multiespectrales para realizar la detección de vida basándonos en soluciones utilizadas en aplicaciones de búsqueda y rescate.

Make a fake fingerprint to fool a security system

Espectrografía:

NIR-SWIR

Uso de la segunda ventana de absorción del agua.

1470nm

Visible

Miguel A. Ferrer and Aythami Morales. "Hand-Shape Biometrics combining the visible and Short Wave InfraRed Bands" Enviado a IEEE Transactions on Information Forensics & Security. Segunda Revisión

Espectrografía:

NIR-SWIR

Uso de la segunda ventana de absorción del agua.

1470nm

Rojo (650nm)

Miguel A. Ferrer and Aythami Morales. "Hand-Shape Biometrics combining the visible and Short Wave InfraRed Bands" Enviado a IEEE Transactions on Information Forensics & Security. Segunda Revisión • Se utiliza una modificación del "*normalized difference skin index (NDSI)"* :

$$MNDSI(\lambda_1, \lambda_2) = \frac{J(\lambda_1) - J(\lambda_2)}{J(\lambda_1) + J(\lambda_2)}$$

NDSI: λ1=1100nm, λ2=1470nm MNDSI: λ1=650nm, λ2=1470nm

El índice se puede aproximar teóricamente utilizando el modelo de Kubelka y Munk :

$$MNDSI(650,1470) \approx \frac{0.62 \cdot 0.9 - 0.06 \cdot 1.85}{0.62 \cdot 0.9 + 0.06 \cdot 1.85} = 0.67$$

Base de datos

Manos Impostoras		Observaciones	Muestras
	Plástico	Colores blanco, amarillo, azul, naranja, rosa, rojo y verde	35
	Papel	Colores blanco, amarillo, azul, naranja, rosa, rojo y verde	35
S	Papel	Imagen de la mano escaneada e impresa 600 ppp	5
ético	Cartón	Colores blanco, amarillo, azul, naranja, rosa, rojo y verde	35
sint	Arcilla	Seca color teja	5
ales	Madera	Haya, cerezo, pino y riga	20
teri	Corcho	Color blanco	5
Ma	Yeso	Color blanco	5
	Metal	Acero inoxidable de color gris	5
	Cuero	Color negro	5
	Guantes	De tela de color rojo, marrón y beige	15
	Silicona	Alto contenido de agua	5
	Hojas árbol	Eucalipto, naranja y laurel	15
icos	Hojas árbol	Los mismos una semana secos	15
ırgán	Hojas árbol	Los mismos dos semana secos	15
ales o	Fruta	Naranja, plátano y manzana	15
ateria	Fruta	Los mismos secos un día	15
Ma	Fruta	Los mismos secos dos días	15
	Carne	Jamón fresco	5
Manos Genuinas		Raza caucásica (50 usuarios masculinos y 48 femeninas)	980
		Raza negra (2 usuarias femeninas)	20

Base de datos

- Función de densidad de probabilidad del índice de detección de vida.
- Los materiales orgánicos se acercan a la respuesta de la piel.
- El factor determinante es el contenido de agua.

Distribución de probabilidad

PROPUESTA: Mejora basada en 2D-MNDSI

 Problemas entre materiales orgánicos y manos de raza negra.

- Mejora basada en el 2D-MNDSI:
 - MNDSI(650,1470)
 - MNDSI(510,1470)

M. A. Ferrer, A. Morales, J. D. González, Y. Medina. "*Wide band spectroscopic aliveness detection in contactless hand biometrics*" Enviado a IET Computer Vision.

PROPUESTA: Mejora basada en 2D-MNDSI

 Problemas entre materiales orgánicos y manos de raza negra.

0% de error

- Mejora basada en el 2D-MNDSI:
 - MNDSI(650,1470)
 - MNDSI(510,1470)

M. A. Ferrer, A. Morales, J. D. González, Y. Medina. "*Wide band spectroscopic aliveness detection in contactless hand biometrics*" Enviado a IET Computer Vision.

6. CONCLUSIONESY LÍNEAS FUTURAS

Comparativa

Sistemas	Medidas	Bases de datos	Usuarios	EER(%)		
Estado del Arte Con Contacto						
[A. Kumar <i>et al,</i> 2003]	Geometría, textura palmar	Propietaria	100	FAR=0		
				FRR=1.41		
[S. Ribaric <i>et al,</i> 2003]	Textura palmar, textura	Propietaria	130	FAR=0		
	dedos			FRR=0.2		
[Kumar y D. Zhang, 2004]	Silueta de la mano, textura	Propietaria	100	0.6		
	palmar					
[S. Ribarić y I. Fratric, 2005]	Geometría, textura palmar	Propietaria	237	0.58		
[Q. Li <i>et al,</i> 2006]	PCA silueta	Propietaria	98	0.07		
[M. Ferrer <i>et al,</i> 2009]	Geometría, textura, palmar,	GPDS	100	0.01		
	dedos y vascular					
Estado del Arte Sin Contacto						
[A. Kumar, 2008]	Información Cohorte	IITD	235	1.31		
[G. K. Ong Michael <i>et al,</i> 2010]	Palma y nudillos	Propietaria	136	1.97		
[V. Kanhangad <i>et al,</i> 2009]	Palma 2D y 3D	Propietaria	177	2.6		
[Y. Hao <i>et al,</i> 2008]	Palma multiespectral	Propietaria	165	0.5		
[Yingbo Zhou y Ajay Kumar, 2010]	Patrón vascular	Propietaria	100	0.38		
Sistema Unimodal	Geometría	GPDS-CL1	110	2.64		
Sistema Unimodal	Geometría	GPDS-CL2	100	0.63		
Sistema Multimodal	SIFT, OLOF y Geometría	IITD	235	0.21		
Sistema Multimodal	SIFT, OLOF y Geometría	GPDS-CL1	110	0.11		
Sistema Multimodal	SIFT, OLOF y Geometría	GPDS-CL2	100	0.007		

Comparativa – Sistemas con contacto

Sistemas	Medidas	Bases de datos	Usuarios	EER(%)		
	Estado del Arte Con Co	ontacto				
[A. Kumar <i>et al,</i> 2003]	Geometría, textura palmar	Propietaria	100	FAR=0		
				FRR=1.41		
[S. Ribaric <i>et al,</i> 2003]	Textura palmar, textura	Propietaria	130	FAR=0		
	dedos			FRR=0.2		
[Kumar y D. Zhang, 2004]	Silueta de la mano, textura	Propietaria	100	0.6		
	palmar					
[S. Ribarić y I. Fratric, 2005]	Geometría, textura palmar	Propietaria	237	0.58		
[Q. Li <i>et al,</i> 2006]	PCA silueta	Propietaria	98	0.07		
[M. Ferrer <i>et al,</i> 2009]	Geometría, textura, palmar,	GPDS	100	0.01		
	dedos y vascular					
Estado del Arte Sin Contacto						
[A. Kumar, 2008]	Información Cohorte	IITD	235	1.31		
[G. K. Ong Michael <i>et al,</i> 2010]	Palma y nudillos	Propietaria	136	1.97		
[V. Kanhangad <i>et al,</i> 2009]	Palma 2D y 3D	Propietaria	177	2.6		
[Y. Hao <i>et al,</i> 2008]	Palma multiespectral	Propietaria	165	0.5		
[Yingbo Zhou y Ajay Kumar, 2010]	Patrón vascular	Propietaria	100	0.38		
Sistema Unimodal	Geometría	GPDS-CL1	110	2.64		
Sistema Unimodal	Geometría	GPDS-CL2	100	0.63		
Sistema Multimodal	SIFT, OLOF y Geometría	IITD	235	0.21		
Sistema Multimodal	SIFT, OLOF y Geometría	GPDS-CL1	110	0.11		
Sistema Multimodal	SIFT, OLOF y Geometría	GPDS-CL2	100	0.007		

Comparativa – Sistemas sin contacto

Sistemas	Medidas	Bases de datos	Usuarios	EER(%)		
Estado del Arte Con Contacto						
[A. Kumar <i>et al,</i> 2003]	Geometría, textura palmar	Propietaria	100	FAR=0		
				FRR=1.41		
[S. Ribaric <i>et al,</i> 2003]	Textura palmar, textura	Propietaria	130	FAR=0		
	dedos			FRR=0.2		
[Kumar y D. Zhang, 2004]	Silueta de la mano, textura	Propietaria	100	0.6		
	paimar					
[S. Ribarić y I. Fratric, 2005]	Geometría, textura palmar	Propietaria	237	0.58		
[Q. Li et al, 2006]	PCA silueta	Propietaria	98	0.07		
[M. Ferrer <i>et al,</i> 2009]	Geometría, textura, palmar,	GPDS	100	0.01		
	dedos y vascular					
Estado del Arte Sin Contacto						
[A. Kumar, 2008]	Información Cohorte	IITD	235	1.31		
[G. K. Ong Michael <i>et al,</i> 2010]	Palma y nudillos	Propietaria	136	1.97		
[V. Kanhangad <i>et al,</i> 2009]	Palma 2D y 3D	Propietaria	177	2.6		
[Y. Hao <i>et al,</i> 2008]	Palma multiespectral	Propietaria	165	0.5		
[Yingbo Zhou y Ajay Kumar, 2010]	Patrón vascular	Propietaria	100	0.38		
Sistema Unimodal	Geometría	GPDS-CL1	110	2.64		
Sistema Unimodal	Geometría	GPDS-CL2	100	0.63		
Sistema Multimodal	SIFT, OLOF y Geometría	IITD	235	0.21		
Sistema Multimodal	SIFT, OLOF y Geometría	GPDS-CL1	110	0.11		
Sistema Multimodal	SIFT, OLOF y Geometría	GPDS-CL2	100	0.007		

Adquisición:

- La segmentación en entornos no controlados en el espectro visible introduce distorsión que deteriora considerablemente las prestaciones.
- El uso de una correcta configuración en la banda infrarroja posibilita una segmentación precisa.

Extracción de características:

- La geometría de la mano presenta resultados prometedores en condiciones controladas pero se deteriora en condiciones más realísticas.
- El método MSIFT mejora considerablemente a OLOF en condiciones controladas.
- Las técnicas propuestas de preprocesado y validación introducidas en SIFT mejoran considerablemente los resultados en todas las condiciones.

Conclusiones

 La fusión a nivel de resultados de la biometría de la silueta y la palma mejora considerablemente los resultados.

Detección de vida:

- La información extraída de la banda SWIR en conjunto con información de la banda visible ha demostrado ser de utilidad para la detección de vida.
- En sistemas basados en la respuesta Visible-SWIR, el aspecto fundamental es el contenido de agua de los materiales.

Por hacer...

- Estudio de la escalabilidad.
- Experimentación con sistemas de adquisición interoperables.
- Identificación no colaborativa.
- Robustez frente a ataques.
- Fusión con otras biometrías.

ESTRATEGIAS PARA LA IDENTIFICACIÓN DE PERSONAS MEDIANTE BIOMETRÍA DE LA MANO SIN CONTACTO

2011

Aythami Morales Moreno Director: Dr. D. Miguel Ángel Ferrer Ballester Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones Programa de Doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería del Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería