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1. Introduction

* Most of the voice pathologies are suffered by people who
continously work with voice.

i.e. Professors, customer service, communications, etc.

* Voice pathologies due to neurodegenerative disorders like
Parkinson disease are also common.

— Some pathologies: Unilateral laryngeal paralysis, dysphonia, vocal
fold paralysis, nodules, hyponasality, hypernasality, etc.

* Treatment costs for the health system are increasing.

— Voice’s treatment costs for professors in USA is about 2.5billion
annually [1].




1. Introduction
CLP: Cleft Lip and Palate

One of the most frequent congenital malformation around the world

HYPERNASALITY
[2, 3]
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SPEECH THERAPY

Pharink There isn’t an objective measure
to quantify the progress of the
treatment.
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2. Methodology
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X* 2.1. Database
CG&PDS at Universidad Nacional de Colombia, branch Manizales.
* Population: Children aged between 5 to 15
* Five Spanish vowels pronounced in sustained manner
*Frequency sample: 44.100Hz

* 156 hypernasal registers

* 110 healthy registers




2.2. Characterization

Cesptral and Noise Features

Voice signal in time domain: Jitter and Shimmer
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Hypernasal Voice /gato/

Healthy Voice /gato/
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Features used in [4 - 5] to evaluate hypernasality in vowels.




2.2. Characterization

Cesptral and Noise Features
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Healthy Voice
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2.2. Characterization

Energy in more frequency
bands of the voice signal

80
Healthy Voice
/gato/

Hypernasal Voice
/gato/

Features used in [6] to evaluate hypernasality in vowels and words.




2.2. Characterization

Acoustic, Cesptral and

HNR — Harmonics to Noise Ratio [7]

]
>

CHNR — Cepstral HNR [8]

Noise Measures —
NNE — Normalized Noise Energy [9]

GNE — Glottal to Noise Excitation Ratio [10]

~—

Healthy Voice Pathologic Voice

In [11], the importance of using noise measures to evaluate hypernasality is
highlighted.




2.2. Characterization

Acoustic, Cesptral and Noise Features
GNE — Healthy (red) vs Hipernasal (blue)
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— 2.2. Characterization

o, m—
——
g Non Linear Dynamics Features

Human voice production system can be described nonlinearly, so itis a
Nonlinear Dynamic System [12 - 14].

A way of analyzing nonlinear dynamic systems are Complexity Measures
(Invariants).

 Correlation Dimension (CD)
 Largest Lyapunov Exponent (LLE)

1 Hurst Exponent (H)

d Lempel-Ziv Complexity (LZC)




2.2. Characterization

—
g Non Linear Dynamics Features

Embedding space reconstruction — Diffeomorphic and Strange Attractors

Periodic Signal Periodic signal’s attractor
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2.2. Characterization
Non Linear Dynamics Features

[Taken’s Theorem ] [15]

registro patoldgico

Healthy Voice Pathologic Voice

-

Complexity measures can quantify the
grade of pathology in voice




— 2.2. Characterization

Non Linear Dynamics Features

= m—
>
Correlation Dimension (D )

Estimated by Grassberger and Procaccia Method [16]

D Gives a measure of how complex is the attractor of a signal.

According to embedding theory, more complex signals will generate
irregular attractors, so counting points on consecutive “spheres” is
possible to know how irregular and complex is the time series
(signal).

Other important information in Correlation Dimension is the
dependency between points in the same sphere.




2.2. Characterization
Non Linear Dynamic Features

]
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Largest Lyapunov Exponent (LLE)
Estimated by Rosenstein’s Method [17]

Based on Oseledec’s Theorem [18]:
Separation rate between points in a phase space trajectory is given

by:
d(t) = Ce™

A, is LLE , d(¢) is the mean divergence in time ¢ and Cis a constant
used for normalization proposes.
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— 2.2. Characterization

Non Linear Dynamic Features

]
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Hurst Exponent (H)

Generalization of the description of Brownian Movement, based on
range scaling method proposed by Hurst [19].

Hurst Exponent allows to estimate long term dependences between
points of the signal.

Due to its wide applicability in time series forecasting and complexity
measurement, this feature is considered appropriate to identify normal
and pathological voices.




2.2. Characterization
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Non Linear Dynamic Features
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Lempel-Ziv Complexity (LZC)

This feature is wide used to estimate the complexity of a binary

series.
Its computation allows to know the number of patterns needed to
represent a given sequence [20].

For practical purposes on signal processing, is necessary to assign O
to when the difference between two consecutive samples is negative
and 1 when is positive or null.
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g 2.3. Feature Selection

Sorting features according to its discriminant capacity is necessary to
get stable and consistent results, which is reflected in the overall
performance of the system.

Two methods were tested for Features Selection.

Principal Component Analysis (PCA). [21]

dSequential Floating Feature Selection (SFFS). [22]
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2.3. Classification

e Different Classifiers have been tested:
— Linear Bayesian
— Quadratic Bayesian

— K — Nearest Neigbors
— Soft Margin - Support Vector Machine (SM-SVM)

T Ot



s

2.3. Classification

Soft Margin Support Vector Machine (SM-SVM) is used for deciding
whether a register is pathologic or healthy. [23]

. Hard Margin ; . Soft Margin




3. Experimental Results

EXPERIMENT N21: Automatic Detection of Hypernasality in Children by means of AAV

Database: 110 healthy and 156 hypernasal registers. Recorded in low
noise conditions and all sampled at 44.100Hz.
Five Spanish Vowels.

Characterization

Feature Jitter Shimmer HNR CHNR NNE GNE 11MFCC
Mean Index 1 2 3 4 5 6 7 to17

Std. Dev. Index 18 19 20 21 22 23 241034
Variance Index 35 36 37 38 39 40 41 to 51




3. Experimental Results

EXPERIMENT N21: Automatic Detection of Hypernasality in Children by means of AAV

Automatic Feature Selection: Using PCA transformation, features are
selected and sorted according to their relevance weight, given by the

proper value associated to each proper vector in the representation
space.

Classification: A Bayesian Classifier is used.

- Linear Bayesian




3. Experimental Results

EXPERIMENT N21: Automatic Detection of Hypernasality in Children by means of AAV

Classification per number of features. faf vowel. Classification per number of features. fef vawel.
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3. Experimental Results

EXPERIMENT N21: Automatic Detection of Hypernasality in Children by means of AAV

Success rates increase up to 20% when acoustic and noise features are
considered (NNE, GNE, HNR and CHNR).

Success Rates Success Rates After
Before Acoustic and | Acoustic and Noise
Noise

/a/ 57,06% 79,57%
/e/ 68,89% 88,82%
/i/ 62,08% 87,49%
/o/ 65,95% 84,10%
Ju/ 64,13% 78,86%

Initial space dimensionality is reduced in 45% after PCA
transformation.




3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

Database: 110 healthy and 156 hypernasal registers. Recorded in low
noise conditions and all sampled at 44.100Hz.
Five Spanish Vowels.

Characterization — Acoustic Features

Feature Jitter Shimmer HNR CHNR NNE GNE 11MFCC
Mean Index 1 2 3 4 5 6 7 to17

Std. Dev. Index 18 19 20 21 22 23 241034
Variance Index 35 36 37 38 39 40 41 to 51




3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

Characterization — Nonlinear dynamic Features

Feature CD LLE H LZC
Mean Index 1 2 3 4
Std. Dev. Index 5 6 7 8

Feature Selection Results: Acoustic feature spaces

Initial Dimension Reduced - PCA Reduced - SFFS
/a/ 51 21 23

/e/ 51 23 27
[i/ 51 32 18
/o/ 51 26 20
/u/ 51 28 20
UNION 147 97 99



3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

Nonlinear Dynamic Features Spaces

/a/ 8 3

8
e/ 8 6 6
/i/ 8 2 5
/o/ 8 8 5
Ju/ 8 4 7

UNION 36 23 16




3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

Best AccuracyResults

With Acoustic Features

Accuracy — Without Accuracy — Reduced Accuray — Reduced with
Selection (%) with PCA (%) SFFS (%)
/a/ 86.11 + 8.88 88.28 +8.38 86.03 +6.27
/e/ 89.87 + 10.06 92.45 + 4.06 93.258 +4.54
[i/ 87.58 +6.27 91.28 +5.77 92.45 + 6.83
/o/ 89.87 +3.15 89.13 + 4.86 89.49 + 9.62
Ju/ 86.44 +6.77 87.22 +6.70 89.83+4.74
UNION 93.28+4.12 93.73 +5.28 92.86 + 5.63



3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

Best AccuracyResults

With Nonlinear Dynamic Features

Accuracy — Without

Selection (%)

Accuracy — Reduced

with PCA (%)

Accuray — Reduced with

SFFS (%)

/a/ 86.78 £5.10 86.01£5.73 87.16 £4.37
/e/ 87.19 £ 6.05 87.96 £7.21 87.57 £6.56
[i/ 87.98 £ 3.40 86.42 + 8.33 86.86 £ 5.6
/o/ 86.48 + 8.65 86.14 £+ 4.31 85.73 £5.96
Ju/ 86.11+£6.42 86.15 + 8.23 86.85 *+ 8.20
UNION 91.16 £ 7.24 92.08 £8.21 92.05+5.71



3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

Specificity:

I'N
IN+FP

Sensitivity:

TP

TP+ FN

Acoustic analysis

Vowel sM NF Accuracy Sensitivity Specificity
wWH ok 8b.11 5.8 81.90+8.30 4240811271
faf PCA 21 B8.281+8.38 90.77+12.06 | 83.31+10.90
SFFS 23 Bb.0316.27 92.9316.26 76.481+9.3]

WS al a4.8 1006 | 890411230 90.461-8.50

le PCA 23 92.451+4.06 95.5144.46 £9.00+8.94
SFES 21 93.281+4.54 97.7615.62 87.174+10.33

WS al Bl a81b.2f 8b.bb+b.11 BE.BOE.40

il PCA 32 91.28145.77 99.331-2.11 B0.691+9.45
SFES I8 92.451-6.83 97.45+4.55 86.351+11.95

wWo ol 8987 1+3.15 8i.30+4.39 1351548
lo/ PCA 26 89.131+4.86 88.4147.98 90.35+10.27
SFFS 21 B0.4919.62 B7.11+14.78 93.821+9.34

W al 8644677 84.05+7.53 BE.bb+Y.20
fu/ PCA 28 B7.2246.70 95.451-4.64 716.01+12.76
SFFES 20 B9.831+4.74 82.01+7.17 83.25119.20

Wo 147 93.2814.12 42.94916.41 Ha. gl 1.72
Union PCA 97 93.7315.28 92.8619.19 93.71+11.69
SFES 09 02.8615.63 92.281+9.96 94.114-9.96

lection Method,

Voo vwithout Selection, NF: Number of Features




Specificity:

IN
IN+FP

Sensitivity:

TP

TP+ FN

3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

Non-linear dynamics analysis

Vowel SM NE Accuracy Sensitivity Specihcity
WS 8 86.7815.10 86.77+7.44 87.9019.32

fal PCA 8 B6.01+5.73 83.43+0.06 89.7348.57
SFES 3 Br.161+4.37 B7.01+6.70 88.071+8.92

WS 8 B7.191+6.05 85.621+9.06 89.B61-5.24

lef PCA B BT.06+7.21 86.40+9.13 90.67+6.69
SFFS i B7.5716.56 85.60+0.06 90.86+-6.14

WS 8 B7.08+3.40 B7.5418.92 88.9819.94

I/ PCA 2 B6.424+8.33 | 846411232 B7.6917.02
SFES - B6.86+5.62 82.991B.45 93.004-5.18
Ws 8 B6.4B1+-8.65 B4.851+12.49 | BR71+10.02
lof PCA 8 B6.14+4.31 B6.8B0+5.27 87.07+11.23
SFFS 3 82.7315.96 83.49+8.90 88.341-8.96
WS 8 86.11+6.42 B7.8416.90 84.421+13.45

fu/ PCA q B6.15+8.23 B7.26+8.40 83.90+14.21
SFFS 7 86.85+8.20 85.8310.61 87.84+10.60
WS 1 91.164+7.24 00.844+11.00 | 91.28+10.52
Union PCA 23 92.0818.21 95.494-7.21 88.00+12.73
SFFS 16 92.05+5.71 93.58+7.39 90.061-9.78

SM: Selection Method, WS: Without Selection, NF: Number of Features




3. Experimental Results

EXPERIMENT N22: Automatic Selection of Acoustic and Non-linear Dynamics Features
in Voice Signals for Hypernasality Detection

AUC=0.9616 AUC=0.9578

Acoustic, Noise and Cepstral Features

— ) o NonLinear Dynamic Features
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3. Experimental Results

EXPERIMENT N23: Automatic Selection of Non-linear Dynamics Features for Voice
Pathology Detection in Running Speech

Database: A subset of the Kay Elemetrics database.
36 healthy and 36 pathologic registers of people reading “the rainbow

passage”.

Characterization — Nonlinear dynamic Features

Feature CD LLE H LZC
Mean Index 1 2 3 4
Std. Dev. Index 5 6 7 8
Skewness 9 10 11 12




3. Experimental Results

EXPERIMENT N23: Automatic Selection of Non-linear Dynamics Features for Voice
Pathology Detection in Running Speech

Segmentation reqgardless intonation content.

Feature Selection: Using Sequential Floating Feature Selection (SFFS) .

Classification:

-Soft Margin Support Vector Machine (SM-SVM)
- Neural Net (NN)

- K-Nearest Neigbors (K-NN)

With only 6 of those NLD features is possible to detect pathologic

Accuracy with SM-SVM Accuracy with NN Accuracy with K-NN

95.0% * 3.54% 87.9.% *7.74% 89.15% * 6.50%

voices




4. Questions
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ANEX | — CD estimation

Correlation Dimension (CD)

Estimated by Grassberger and Procaccia Method [15]

E log(C, (£)))
Y og(C, (&
D —1331( log(e) j

\_ — J
Where: (¢ (&)= lNlm ZZ;@(E_ JH)
—>00 =1 j=
0 for z<0
And: O(z) = is the Heaviside function.
1 for z>0

N Isthe number of points in the signal

X; _xjH s the distance between points j and jJ.

T Ot



ANEX | — CD estimation

D Gives an idea of how complex is the signal.

According to embedding theory, more complex signals will generate
irregular attractors, so counting points on consecutive “spheres” is
possible to know how irregular and complex is the time series
(signal).

Other important information in Correlation Dimension is the
dependency between points in the same sphere.




ANEX Il = LLE estimation

Largest Lyapunov Exponent (LLE)
Estimated by Rosenstein’s Method [16]

Based on Oseledec’s Theorem [17]:

Separation rate between points in a phase space trajectory is given
by:
d(t) = Ce™

A, is LLE , d(¢) is the mean divergence in time fand C is a constant
used for normalization proposes.




ANEX Il — LLE estimation

LLE estimates the divergence rate of points in the states space (attractor).

This property is important considering that periodic signals generate
closed attractors while non-periodic generate irregulars.

As vocal fold movement in healthy humans is quasi-periodic, and
hypernasal people have problems with their vocal phonation due to its
velo-pharingeal incompetence, their voice signals are non-periodic, thus

LLE can be considered as a good estimator for automatic detection of
hypernasality in voice.




ANEX Il = H estimation

Hurst Exponent (H)

Generalization of the description of Brownian Movement, based on
range scaling method proposed by Hurst [18].

Einstein’s proof shows that distance traveled by a particle is
proportional to the square root of the time:

R . CTO.S

Where R is the range for particle movement, ¢ is a constantand 1 is
the time.




ANEX Il = H estimation

For the generalization proposed by Hurst, signal must be transformed
considering its accumulated deviations respect to the mean:

x()= 3 (vt -x(n),, )

neM,
Where M, is the j—¢; segment of the signal x(n) , which contains

1

M points, and x(7) is the mean of the set of points in this segment.

Hurst’s proof generalizes the expression found by Einstein:

EZCTH
S

Where R is the variation range of the signal evaluated for each segment
M  andis expressed as:

R(M) = max{X (i)}—min{X (i)}




ANEX Il = H estimation

S = o is the standard deviation of the signal and ¢ is a scaling constant.

Thus H is calculated as the slope of the straight line formed in the

curve 00 vsM , when is plotted in logarithmic scale, i.e.
o
R(M
o

Then,




ANEX Il = H estimation

Hurst Exponent allows to estimate long term dependences between
points of the signal.

Due to its wide applicability in time series forecasting and complexity
measurement, this feature is considered appropriate to identify normal
and pathological voices.




ANEX IV — LZC estimation

Lempel-Ziv Complexity (LZC)

This feature is wide used to estimate the complexity of a binary

series.
Its computation allows to know the number of patterns needed to
represent a given sequence [19].

For practical purposes on signal processing, is necessary to assign O
to when the difference between two consecutive samples is negative
and 1 when is positive or null.




ANEX IV — LZC estimation

LZ estimation is based on the reconstruction of a sequence by X
copying and insertion of symbols inside a new series.

Consider a sequence X =x.x,..x, which shall be analyzed from
left to right, take the first bin in the binary chain and insert it by
default as starting point.

Define Sas a variable that holds bits inserted until the moment, so
at the beginning S only has X;.

Define O as a variable that accumulates every bit that is analyzed
from left to right inside binary train.




ANEX IV — LZC estimation

On each iteration S and Q are joined to form SQ.
SOz |s the resulting sequence after remove last digit in SO

When O ¢wv(SOr) the process of bits insertion is done.

Complexity ¢ will be the number of sub sets in which original
sequence is divided.




ANEX IV - LZC estimation
(example)

Set X =0001001

1. Ois the first bit inserted, thus is represented as 0*. Where * indicates that there finish a
block of bits and a new one must be start.

2.5§=0,and Q=,0sthe second bit in the sequenceXx . So, SO =00 and SQr =0
Note that O e v(SQx) where v(SQx) denotes the vocabulary of the set SO Thus, the
second block is not finished yet.

3. S =0 because the bits insertion process have not finished. O =00 is the sequence found
continuing with the analysis of the bits train.
SOz =00,and Q ev(SOsx) so the block of bits that is in process will be 0*00.

4.6-0,0=001, SO=0001 andSQOx =000 . Note that O ¢ v(SOr) , so here the second
block is finished, ie: 0*001*




ANEX IV - LZC estimation
(example)

LEMPEL ZIV COMPLEXITY. (An ilustrative example).
5.5=0001,0=0, SO = 00010 andSQz=0001 - But Q e (SQx) , S0 0*001*0
6.5=0001,0=00, SO =000100 and SOz =00010, QewSOx) ,thus0*001*00
7.5=0001,0=001, SO = 0001001 and SOz = 000100 .Since QewWSOx) , then

here the division of the sequence X is not finished.
0*001*001...

As three blocks (patterns) were necessary to represent the sequence, the complexity
is c=3.




ANEX V — ROC curves

ROC Curves Construction

TP: # of patterns of class 0 correctly classified as class O.
FN: # of patterns of class 0 missclassified as class 1.
FP: # of patterns of class 1 missclassified as class O.
TN: # of patterns of class 1 correctly classified as class 1.

Confusion Matrix

TN
True Class Specificity: TN+ FP
Class0 Class1
Estimated Class0 TP FP TP
Class Class 1 EN ™ Sensitivity: m




ANEX V — ROC curves

100

TP: True Acceptance (%)
S
1

AN

: Hi Ho

L1
=

FP: False Acceptance (%)

Figure taken from: “Contribuciones Metodologicas para la evaluacion objetiva de
patologias laringeas” Cap. 5.
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