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• Most of the voice pathologies are suffered by people who
continously work with voice. 

i.e. Professors, customer service, communications, etc.

• Voice pathologies due to neurodegenerative disorders like 
Parkinson disease are also common.

– Some pathologies: Unilateral laryngeal paralysis, dysphonia, vocal 

1. Introduction

– Some pathologies: Unilateral laryngeal paralysis, dysphonia, vocal 
fold paralysis, nodules, hyponasality, hypernasality, etc.

• Treatment costs for the health system are increasing. 
– Voice’s treatment costs for professors in USA is about 2.5billion 

annually [1].



1. Introduction

CLP: Cleft Lip and Palate
One of the most frequent congenital malformation around the world

HYPERNASALITY About 1.5 of each 1.000 children (Europe)

About 1 of each 1.000 children (USA, Colombia) [2, 3]

SPEECH THERAPY

There isn’t an objective measure

to quantify the progress of the

treatment.



2. Methodology

Feature Selection

Characterization
Data Base

Classification

Hypernasal?NO YES



2.1. Database2.1. Database

CG&PDS at Universidad Nacional de Colombia, branch Manizales.

• Population: Children aged between 5 to 15

• Five Spanish vowels pronounced in sustained manner

•Frequency sample: 44.100Hz

• 156 hypernasal registers

• 110 healthy registers



Voice signal in time domain: Jitter and Shimmer

Hypernasal Voice /gato/

Acoustic, Acoustic, CesptralCesptral and Noise Featuresand Noise Features

2.2. Characterization2.2. Characterization

Healthy Voice /gato/

Features used in [4 - 5] to evaluate hypernasality in vowels.



Measure of 

Healthy Voice

/a/

Acoustic, Acoustic, CesptralCesptral and Noise Featuresand Noise Features

2.2. Characterization2.2. Characterization

Measure of 

Instability in Voice

Hypernasal Voice

/a/



Healthy Voice

/gato/ 

Energy in more frequency

bands of the voice signal

Acoustic, Acoustic, CesptralCesptral and Noise Featuresand Noise Features

2.2. Characterization2.2. Characterization

/gato/ 

Hypernasal Voice

/gato/ 

Features used in [6] to evaluate hypernasality in vowels and words.



HNR – Harmonics to Noise Ratio [7]

CHNR – Cepstral HNR [8]

NNE – Normalized Noise Energy [9]

GNE – Glottal to Noise Excitation Ratio [10]

Noise Measures

Acoustic, Acoustic, CesptralCesptral and Noise Featuresand Noise Features

2.2.2.2. CharacterizationCharacterization

GNE – Glottal to Noise Excitation Ratio [10]

In [11], the importance of using noise measures to evaluate hypernasality is

highlighted.



GNE – Healthy (red) vs Hipernasal (blue)

Acoustic, Acoustic, CesptralCesptral and Noise Featuresand Noise Features

2.2. Characterization2.2. Characterization

To measure noise due to velopharyngeal 

incompetence and compensatory movements on 

vocal tract (pharynx and vocal tract)



Human voice production system can be described nonlinearly, so it is a 

Nonlinear Dynamic System [12 - 14].

A way of analyzing nonlinear dynamic systems are Complexity Measures 

(Invariants).

Non Non LLinear Dynamics Features inear Dynamics Features 

2.2. Characterization2.2. Characterization

� Correlation Dimension (CD)

� Largest Lyapunov Exponent (LLE)

� Hurst Exponent (H)

� Lempel-Ziv Complexity (LZC)



Non Non LLinear Dynamics Features inear Dynamics Features 

Embedding space reconstruction – Diffeomorphic and Strange Attractors 

Periodic Signal Periodic signal’s attractor

2.2. Characterization2.2. Characterization



Non Non LLinear Dynamics Features inear Dynamics Features 

Taken’s Theorem [15]

2.2. Characterization2.2. Characterization

Healthy Voice Pathologic Voice

Complexity measures can quantify the 

grade of pathology in voice



Correlation Dimension (     )

Estimated by Grassberger and Procaccia Method [16]

Non Non LLinear Dynamics Features inear Dynamics Features 

Gives a measure of how complex is the attractor of a signal.

According to embedding theory, more complex signals will generate

cD

cD

2.2. Characterization2.2. Characterization

According to embedding theory, more complex signals will generate

irregular attractors, so counting points on consecutive “spheres” is

possible to know how irregular and complex is the time series

(signal).

Other important information in Correlation Dimension is the

dependency between points in the same sphere.



Largest Lyapunov Exponent (LLE)

Estimated by Rosenstein’s Method [17]

Based on Oseledec’s Theorem [18]:

Non Non LLinear Dynamic Features inear Dynamic Features 

2.2. Characterization2.2. Characterization

Based on Oseledec’s Theorem [18]:

Separation rate between points in a phase space trajectory is given

by:

is LLE , is the mean divergence in time and is a constant

used for normalization proposes.

t
Cetd 1)(

λ=

1λ )(td t C



Hurst Exponent  (H)

Generalization of the description of Brownian Movement, based on 

range scaling method proposed by Hurst [19].

Non Non LLinear Dynamic Features inear Dynamic Features 

2.2. Characterization2.2. Characterization

Hurst Exponent allows to estimate long term dependences between

points of the signal.

Due to its wide applicability in time series forecasting and complexity

measurement, this feature is considered appropriate to identify normal

and pathological voices.



Lempel-Ziv Complexity (LZC)

This feature is wide used to estimate the complexity of a binary 

series.

Its computation allows to know the number of patterns needed to 

represent a given sequence [20].

Non Non LLinear Dynamic Features inear Dynamic Features 

2.2. Characterization2.2. Characterization

represent a given sequence [20].

For practical purposes on signal processing, is necessary to assign 0 

to when the difference between two consecutive samples is negative 

and 1 when is positive or null. 



2.3. Feature Selection2.3. Feature Selection

Sorting features according to its discriminant capacity is necessary to

get stable and consistent results, which is reflected in the overall

performance of the system.

Two methods were tested for Features Selection.

�Principal Component Analysis (PCA). [21]

�Sequential Floating Feature Selection (SFFS). [22] 

Two methods were tested for Features Selection.



2.3. Classification2.3. Classification

• Different Classifiers have been tested:

– Linear Bayesian

– Quadratic Bayesian

K – Nearest Neigbors– K – Nearest Neigbors

– Soft Margin - Support Vector Machine (SM-SVM)



Soft Margin Support Vector Machine (SM-SVM) is used for deciding

whether a register is pathologic or healthy. [23]

Hard Margin Soft Margin

2.3. Classification2.3. Classification

Hard Margin Soft Margin



3. Experimental Results3. Experimental Results
EXPERIMENT Nº1: Automatic Detection of Hypernasality in Children by means of AAV

Database: 110 healthy and 156 hypernasal registers. Recorded in low 

noise conditions and all sampled at 44.100Hz.

Five Spanish Vowels.

Feature Jitter Shimmer HNR CHNR NNE GNE 11MFCC

Mean Index

Std. Dev. Index

1

18

2

19

3

20

4

21

5

22

6

23

7 to 17

24 to 34

Variance Index 35 36 37 38 39 40 41 to 51

Characterization



Automatic Feature Selection: Using PCA transformation, features are

selected and sorted according to their relevance weight, given by the

proper value associated to each proper vector in the representation

space.

3. Experimental Results3. Experimental Results
EXPERIMENT Nº1: Automatic Detection of Hypernasality in Children by means of AAV

space.

Classification: A Bayesian Classifier is used.

- Linear Bayesian



3. Experimental Results3. Experimental Results
EXPERIMENT Nº1: Automatic Detection of Hypernasality in Children by means of AAV



Success rates increase up to 20% when acoustic and noise features are 

considered (NNE, GNE, HNR and CHNR).

VOWEL Success Rates

Before Acoustic and 

Noise

Success Rates After

Acoustic and Noise

/a/ 57,06% 79,57%

3. Experimental Results3. Experimental Results
EXPERIMENT Nº1: Automatic Detection of Hypernasality in Children by means of AAV

Initial space dimensionality is reduced in 45% after PCA 

transformation.

/a/ 57,06% 79,57%

/e/ 68,89% 88,82%

/i/ 62,08% 87,49%

/o/ 65,95% 84,10%

/u/ 64,13% 78,86%



3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection

Database: 110 healthy and 156 hypernasal registers. Recorded in low 

noise conditions and all sampled at 44.100Hz.

Five Spanish Vowels.

Characterization – Acoustic Features

Feature Jitter Shimmer HNR CHNR NNE GNE 11MFCC

Mean Index

Std. Dev. Index

1

18

2

19

3

20

4

21

5

22

6

23

7 to 17

24 to 34

Variance Index 35 36 37 38 39 40 41 to 51

Characterization – Acoustic Features



3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection

Characterization – Nonlinear dynamic Features

Feature CD LLE H LZC

Mean Index

Std. Dev. Index

1

5

2

6

3

7

4

8

Feature Selection Results: Acoustic feature spaces

Vowel Initial Dimension Reduced - PCA Reduced - SFFS

/a/ 51 21 23

/e/ 51 23 27

/i/ 51 32 18

/o/ 51 26 20

/u/ 51 28 20

UNION 147 97 99



Nonlinear Dynamic Features Spaces

Vowel Initial Dimension Reduced - PCA Reduced - SFFS

/a/ 8 8 3

/e/ 8 6 6

/i/ 8 2 5

/o/ 8 8 5

3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection

/o/ 8 8 5

/u/ 8 4 7

UNION 36 23 16



Best AccuracyResults

With Acoustic Features

Vowel Accuracy – Without

Selection (%)

Accuracy – Reduced

with PCA (%)

Accuray – Reduced with

SFFS (%)

/a/ 86.11 ± 8.88 88.28 ±8.38 86.03 ± 6.27

3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection

/e/ 89.87 ± 10.06 92.45 ± 4.06 93.258 ± 4.54

/i/ 87.58 ± 6.27 91.28 ± 5.77 92.45 ± 6.83

/o/ 89.87 ± 3.15 89.13 ± 4.86 89.49 ± 9.62

/u/ 86.44 ± 6.77 87.22 ± 6.70 89.83 ± 4.74

UNION 93.28 ± 4.12 93.73 ± 5.28 92.86 ± 5.63



Best AccuracyResults

With Nonlinear Dynamic Features

Vowel Accuracy – Without

Selection (%)

Accuracy – Reduced

with PCA (%)

Accuray – Reduced with

SFFS (%)

/a/ 86.78 ± 5.10 86.01 ± 5.73 87.16 ± 4.37

3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection

/e/ 87.19 ± 6.05 87.96 ± 7.21 87.57 ± 6.56

/i/ 87.98 ± 3.40 86.42 ± 8.33 86.86 ± 5.6

/o/ 86.48 ± 8.65 86.14 ± 4.31 85.73 ± 5.96

/u/ 86.11 ± 6.42 86.15 ± 8.23 86.85 ± 8.20

UNION 91.16 ± 7.24 92.08 ± 8.21 92.05 ± 5.71



Acoustic analysis

FPTN

TN

+

Specificity:

3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection

FNTP

TP

+

Sensitivity:



Non-linear dynamics analysis

FPTN

TN

+

Specificity:

3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection

FNTP

TP

+

Sensitivity:



AUC = 0.9616 AUC = 0.9578

3. Experimental Results3. Experimental Results
EXPERIMENT Nº2: Automatic Selection of Acoustic and Non-linear Dynamics Features 

in Voice Signals for Hypernasality Detection



3. Experimental Results3. Experimental Results
EXPERIMENT Nº3: Automatic Selection of Non-linear Dynamics Features for Voice 

Pathology Detection in Running Speech

Database: A subset of the Kay Elemetrics database.

36 healthy and 36 pathologic registers of people reading “the rainbow 

passage”.  

Characterization – Nonlinear dynamic Features

Feature CD LLE H LZC

Mean Index

Std. Dev. Index

Skewness

Curtosis

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16



3. Experimental Results3. Experimental Results
EXPERIMENT Nº3: Automatic Selection of Non-linear Dynamics Features for Voice 

Pathology Detection in Running Speech

Segmentation regardless intonation content.

Feature Selection: Using Sequential Floating Feature Selection (SFFS) .

Classification:

-Soft Margin Support Vector Machine (SM-SVM)

- Neural Net (NN)- Neural Net (NN)

- K-Nearest Neigbors (K-NN)

With only 6 of those NLD features is possible to detect pathologic 

voices

Accuracy with SM-SVM Accuracy with NN Accuracy with K-NN

95.0% ± 3.54% 87.9.% ± 7.74% 89.15% ± 6.50%



4. Questions
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Correlation Dimension (CD)

Estimated by Grassberger and Procaccia Method [15]
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Gives an idea of how complex is the signal.

According to embedding theory, more complex signals will generate

irregular attractors, so counting points on consecutive “spheres” is

possible to know how irregular and complex is the time series

cD

ANEX I ANEX I –– CD estimationCD estimation

possible to know how irregular and complex is the time series

(signal).

Other important information in Correlation Dimension is the

dependency between points in the same sphere.



Largest Lyapunov Exponent (LLE)

Estimated by Rosenstein’s Method [16]

Based on Oseledec’s Theorem [17]:

ANEX II ANEX II –– LLE estimationLLE estimation

Based on Oseledec’s Theorem [17]:

Separation rate between points in a phase space trajectory is given

by:

is LLE , is the mean divergence in time and is a constant

used for normalization proposes.

t
Cetd 1)(

λ=

1λ )(td t C



LLE estimates the divergence rate of points in the states space (attractor).

This property is important considering that periodic signals generate

closed attractors while non-periodic generate irregulars.

ANEX II ANEX II –– LLE estimationLLE estimation

As vocal fold movement in healthy humans is quasi-periodic, and

hypernasal people have problems with their vocal phonation due to its

velo-pharingeal incompetence, their voice signals are non-periodic, thus

LLE can be considered as a good estimator for automatic detection of

hypernasality in voice.



Hurst Exponent  (H)

Generalization of the description of Brownian Movement, based on 

range scaling method proposed by Hurst [18].

ANEX III ANEX III –– H estimationH estimation

Einstein’s proof shows that distance traveled by a particle is 

proportional to the square root of the time:

Where       is the range for particle movement,      is a constant and      is 

the time.

5.0cTR =

R c T
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For the generalization proposed by Hurst, signal must be transformed

considering its accumulated deviations respect to the mean:

Where is the segment of the signal , which contains
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ANEX III ANEX III –– H estimationH estimation

. points, and is the mean of the set of points in this segment.

Hurst’s proof generalizes the expression found by Einstein:

Where is the variation range of the signal evaluated for each segment

and is expressed as:
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is the standard deviation of the signal and is a scaling constant.

Thus is calculated as the slope of the straight line formed in the

curve , when is plotted in logarithmic scale, i.e.
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Hurst Exponent allows to estimate long term dependences between

points of the signal.

Due to its wide applicability in time series forecasting and complexity

ANEX III ANEX III –– H estimationH estimation

Due to its wide applicability in time series forecasting and complexity

measurement, this feature is considered appropriate to identify normal

and pathological voices.



Lempel-Ziv Complexity (LZC)

This feature is wide used to estimate the complexity of a binary 

series.

Its computation allows to know the number of patterns needed to 

represent a given sequence [19].

ANEX IV ANEX IV –– LZC estimationLZC estimation

represent a given sequence [19].

For practical purposes on signal processing, is necessary to assign 0 

to when the difference between two consecutive samples is negative 

and 1 when is positive or null. 



LZ estimation is based on the reconstruction of a sequence     by 

copying and insertion of symbols inside a new series.

Consider a sequence which shall be analyzed from 

left to right, take the first bin in the binary chain and insert it by 

default as starting point.

X

nxxxX ...21=

ANEX IV ANEX IV –– LZC estimationLZC estimation

default as starting point.

Define     as a variable that holds bits inserted until the moment, so 

at the beginning       only has     .

Define      as a variable that accumulates every bit that is analyzed 

from left to right inside binary train.

S

S 1x

Q



On each iteration     and     are joined to form       . 

πSQ

S Q SQ

Is the resulting sequence after remove last digit in SQ

When                 ,     the process of bits insertion is done.)( πSQvQ∉

ANEX IV ANEX IV –– LZC estimationLZC estimation

When                 ,     the process of bits insertion is done.)( πSQvQ∉

cComplexity     will be the number of sub sets in which original 

sequence is divided.



Set 

1. 0 is the first bit inserted, thus is represented as 0*. Where * indicates that there finish a 

block of bits and a new one must be start.

2. , and          , is the second bit in the sequence . So,                 and       

Note that ,      where denotes the vocabulary of the set           Thus, the

second block is not finished yet.

00=SQ0=S 0=Q 0=πSQX

)( πSQvQ∈ )( πSQv πSQ

0001001=X

ANEX IV ANEX IV –– LZC estimation LZC estimation 

(example)(example)

Note that ,      where denotes the vocabulary of the set           Thus, the

second block is not finished yet.

3.               because the bits insertion process have not finished.              is the sequence found

continuing with the analysis of the bits train.

, and                 ,      so the block of bits that is in process will be 0*00.

4.           ,                 ,                       and                    . Note that , so here the second

block is finished, ie: 0*001*

)( πSQvQ∈

)( πSQvQ∈

)( πSQvQ∉

)( πSQv πSQ

0=S 00=Q

00=πSQ

0=S 001=Q 0001=SQ 000=πSQ



LEMPEL ZIV COMPLEXITY. (An ilustrative example).

5.                ,          ,                          and                      . But , so 0*001*0

6.                 ,            ,                             and                            ,                        , thus 0*001*00

7.                 ,               ,                              and                              . Since , then

here the division of the sequence is not finished.

0001=S 0=Q 00010=SQ 0001=πSQ

)( πSQvQ∈

)( πSQvQ∈

00=Q0001=S 000100=SQ 00010=πSQ )( πSQvQ∈

0001=S 001=Q 0001001=SQ 000100=πSQ

ANEX IV ANEX IV –– LZC estimation LZC estimation 

(example)(example)

here the division of the sequence is not finished.

0*001*001…

As three blocks (patterns) were necessary to represent the sequence, the complexity

is

X

.3=c



ROC Curves Construction

TP: # of patterns of class 0 correctly classified as class 0.

FN: # of patterns of class 0 missclassified as class 1.

FP: # of patterns of class 1 missclassified as class 0.

TN: # of patterns of class 1 correctly classified as class 1.

Confusion Matrix

ANEX V ANEX V –– ROC curvesROC curves

True Class

Class 0 Class 1

Estimated

Class

Class 0 TP FP

Class 1 FN TN

Confusion Matrix

FPTN

TN

+
Specificity:

FNTP

TP

+
Sensitivity:



ANEX V ANEX V –– ROC curvesROC curves

Figure taken from: “Contribuciones Metodológicas para la evaluación objetiva de 

patologías laríngeas” Cap. 5.
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